Beschreibung
Triboelectric nanogenerators (TENGs) are promising self-powering supplies for various intelligent sensing and monitoring devices, especially because they can harvest electric energy from low frequency and small-scale mechanical motions. Despite the fact that contact-separation mode TENGs with smaller contact areas harvest higher electrical outputs due to fringing effect, the impact of fringing effect on TENGs’ electrical outputs is rarely investigated quantitatively. Herein, in this study, the influence of fringing effect on the electrical outputs of contact-separation mode TENGs by introducing discontinuity on the tribo-negative side manually is investigated. In the results, it is revealed that the TENGs with more discontinuities show higher overall electric performance. Compared to pristine TENGs, the TENGs with discontinuity increased significantly, improving the surface charge by 50% and the power density by 114% when cross discontinuities are applied. However, one should generate discontinuities on tribo-negative side of TENGs using ceramic blade instead of metal blade within a positive-ion atmosphere due to the neutralization through the electrically conductive metal blade. The computational simulation validates that the TENGs with discontinuities obtain higher electrical outputs, and further investigates the effect of discontinuity gap size and array distance on TENGs performance. In this study, a promising method is provided for the future design of TENGs using discontinuous structures.